Ciri umum barisan aritmatika adalah selisih dari setiap suku dengan suku sebelumnya selalu sama, yang biasa disebut dengan beda atau ‘b’.
Sebagai contoh, 3, 6, 9, 12, … , merupakan barisan aritmatika, karena selisih dari setiap suku yang berurutan selalu sama, yaitu 6 – 3 = 9 – 6 = 12 – 9 = 3. 3 ini lah yang disebut dengan selisih atau beda (b).
Untuk mencari suku ke-n dari barisan tersebut, dapat digunakan rumus:
Contoh Soal: Tentukan suku ke 11 dari barisan berikut: 11, 18, 25, 32, …
Jawaban:
Perhatikan bahwa 18 – 11 = 25 – 18 = 7, sehingga barisan tersebut merupakan barisan aritmatika, sehingga:
Deret Aritmatika
Pada deret aritmatika, kita akan menghitung jumlah setiap suku pada barisan tersebut.
Sebagai contoh, 9 + 15 + 21 + 27 + … merupakan deret aritmatika, karena selisih dari setiap suku yang berurutan selalu sama, yaitu 15 – 9 = 21 – 15 = 6, dan merupakan bentuk penjumlahan.
Untuk mencari jumlah suku-sukunya hingga suku ke-n, dapat kita gunakan rumus:
Contoh Soal: Tentukanlah jumlah dari 17 + 30 + 43 + … + 329.
Jawaban:
Karena selisih setiap suku yang berurutan sama, yaitu 13, dan berbentuk penjumlahan, maka penjumlahan bilangan tersebut merupakan deret aritmatika, sehingga dapat kita gunakan rumus
Akan tetapi, nilai n belum kita ketahui, sehingga harus kita hitung terlebih dahulu dengan menggunakan
Dengan demikian,
17 + 13n – 13 = 329
13n = 329 – 4 = 325
Selain barisan dan deret aritmatika di atas, ada juga barisan dan deret geometri di mana rasio dari setiap suku-sukunya yang berurutan selalu sama.
0 komentar:
Posting Komentar