Rabu, 24 September 2014

sistem persamaan linier dan pertidaksamaan linier

sistem persamaan linier dan pertidaksamaan linier

Sistem Persamaan dan Pertidaksamaan Linear
PERSAMAAN DAN PERTIDAKSAMAAN
LINEAR SATU VARIABEL
A. Persamaan Linear Satu Variabel
1. Kalimat Terbuka, Variabel, dan Konstanta
a. Kalimat terbuka adalah kalimat yang belum dapat diketahui nilai kebenarannya.
b. Variable (perubah) adalah lambang (symbol)
l) pada kalimat terbuka yang dapat diganti oleh sembarang anggota himpunan yang telah ditentukan
c. Konstanta adalah lambang yang menyatakan suatu bilangan tertentu
Pada kalimat berikut x + 5 = 12
Belum dapat mengatakan kalimat itu benar atau salah, sebab nilai (x) belum diketahui. Bila lambang (x) diganti dengan lambang bilangan cacah, barulah itu dapat dikatakan kalimat itu benar atau salah. Jika (x) diganti dengan “3” , kalimat itu bernilai salah ; tetapi bila (x) diganti dengan 7 , kalimat itu bernilai benar. Lambang (x) dapat pula diganti menggunaan huruf-huruf kecil dalam abjad lainnya, yaitu ; a, b,c,… x,y,z dari bentuk diatas
x+5 +12 (kalimat terbuka)
3+ 5 = 12 (kalimat Salah )
7+5 = 12 (kalimat benar)
Huruf x pada x + 5 = 12 disebut variable (peubah), sedangkan 5 dan 12 disebut konstanta
Contoh :
Kalimat Terbuka Peubah Konstanta
x + 13 + 17 x 13 dan 17
7 – y = 12 y 7 dan 12
4z – 1 = 11 z -1 dan 11
Catatan :
Kalimat terbuka adalah kalimat yang mengandung satu atau lebih variabel dan belum diketahui nilai kebenarannya.
contoh:
x + 2 =5
2. Pengertian Persamaan Linier Satu Variabel
Persamaan Linier Satu Variabel adalah kalimat terbuka yang dihubungkan tanda sama dengan ( “=”) dan hanya mempunyai satu variable berpangkat 1 . bentuk umum persamaan linier satu variable adalah ax + b = 0
contoh :
1. x + 3 – 7
2. 3a + 4 = 19
3. = 10
Pada contoh diatas x, a, b adalah variable (peubah) yang dapat diganti dengan sembarang bilangan yang memenuhi .
3. Menyelesaikan Persamaan Linear Satu Variabel (PLSV)
Himpuana Penyelesaian (HP) adalah himpunan dari penyelesaian-penyelesaian suatu persamaan .
Ada dua cara untuk menentukan penyelesaian dan himpunan penyelesaian dari suatu persamaan linier satu variable , yaitu :
a. Subtitusi ;
b. Mencari persamaan-persamaan yang ekuivalen
Suatu persamaan dapat dinyatakan ke dalam persamaan yang ekuivalen, dengan cara :
a. Menambah atau mengurangi kedua ruas dengan bilangan yang sama
b. Mengalikan atau membagi kedua ruas dengan bilangan bukan nol yang sama.
Contoh :
1. Dengan menggunakan kode cara diatas , selesaikan persamaan 3×-1=14; jika x Merupakan anggota himpunan P = ( 3,4,5,6) !
Jawab :
3×-1+14 x Є P = (3,4,5,6)
a. Cara subtitusi :
3×-1= 14; jika x = 3 = maka 3(3) – 1 = 8 (salah)
3×-1= 14; jika x = 4 = maka 3(4) – 1 = 11 (salah)
3×-1= 14; jika x = 5 = maka 3(5) – 1 = 14 (benar)
3×-1= 14; jika x = 6 = maka 3(6) – 1 = 17 (salah)
Jadi , penyelesaian dari 3×-1+14 adalah 5
b. Mencari persamaan-persamaan yang ekuivalen
Persamaan Operasi Hitung Hasil
A
b.
c. 3×-1=14 (i) Kedua ruas ditambah 1 3×-1+1 = 14 + 1
3x = 15 (ii)
3x = 15 Kedua ruas dikalikan 1/3 3x = 15
x = 5 (iii)
X =5
Dari table diatas, bila x = 5, disubtituskan pada (a),(b) dan (c) maka persamaan tersebut menjadi suatu kesamaan .
(a) 3×-1=14 3 (5) – 1 = 14
14 = 14 (ekuivalen)
(b). 3x =15 15 = 15 (ekuivalen)
(c) x = 5 5 = 5 (ekuivalen)
Berarti 3x – 1 = 14 dan 3x = 15 merupakan persamaan yang ekuivalen .
4. Persamaan yang ekuivalen
Persamaan yang ekuivalen adalah persamaan-persamaan yang memiliki himpunan penyelesaian sama jika pada persamaan tersebut dilakukan operasi tertentu suatu persamaan yang ekuivalen dinotasikan dengan tanda
Contoh :
1. Menyelesaikan PLSV dengan menggunakan lawan dan kebalikan bilangan
contoh :
Carilah penyelesaian dari :
3 (3x + 4) = 6 ( x -2)
jawab :
9x + 12 = 6x – 12
9x – 6x = -12-12
3x = -24
x =− 24/3
= -8
Jadi , HP = {-8}
2. Perhatikan persamaan 6x – 3 = 2x + 1 dengan x variable pada himpunan bilangan bulat. Untuk menentukan penyelesaian dari persamaan tersebut, dapat dilakukan dengan menyatakannya ke dalam persamaan yang ekuivalen, yaitu sebagai berikut :
Jawab :
6x – 3 = 2x + 1
6x – 3 + 3 = 2x + 1+3
6x = 2x + 4
6x – 2x = 4
4x = 4
x = 1
jadi himpunan pnyelesaiannya adalah 1
dalam garis bilangan , grafik hipunan pnyelesaian suatu persamaan dengan satu variable dinyatakan dengan sebuah noktah (titik) yang ditebalkan. Jadi grafik himpunan penyelesaian dari 6x – 3 = 2x + 1 adalah :
-4 -3 -2 -1 0 1 2 3 4
Contohnya :
Gambarlah grafik penyelesaian persamaan berikut
1. –P + 2 = 14
Jawab :
–P + 2 = 14
-p = 14 – 2
-p = 12
Grafik :
-14 -13 -12 -11 -10
Titik pada -12 ditebalkan
2. 2a + 3 = 6
2a = 6 – 3
2a = 3
a =
.
B. Pertidaksamaan Linier Satu Variabel (PLSV)
1. Pertidaksamaan Linier Satu Variabel
Pertidaksamaan adalah kalimat terbuka yang menggunakan lambing , ≥, dan ≤ . Contohnya bentuk pertidaksamaan : y + 7 y + 4
Pertidaksamaan linier dengan satu variable adalah suatu kalimat terbuka
yang hanya memuat satu variable dengan derajad satu, yang
dihubungkan oleh lambang , ≥, dan ≤. Variablenya hanya satu
yaitu y dan berderajad satu. Pertidaksamaan yang demikian disebut
pertidaksamaan linier dengan satu variable (peubah).
2. Menentukan Himpunan Penyelesaian Pertidaksamaan Linier Satu variable
Sifat- sifat pertidaksamaan adalah :
1. Jika pada suatu pertidaksamaan kedua ruasnya ditambah atau dikurang dengan bilangan yang sama, maka akan diperoleh pertidaksamaan baru yang ekuivalen dengan pertidaksamaan semula
2. Jika pada suatu pertidaksamaan dikalikan dengan bilangan positif , maka akan diperoleh pertidaksamaan baru yang ekuivalen dengan pertidaksamaan semula
3. Jika pada suatu pertidaksamaan dikalikan dengan bilangan negatif , maka akan diperoleh pertidaksamaan baru yang ekuivalen dengan pertidaksamaan semula bila arah dari tanda ketidaksamaan dibalik
4. Jika pertidaksamaannya mengandung pecahan, cara menyelesaikannya adalah mengalikan kedua ruasnya dengan KPK penyebut-penyebutnya sehingga penyebutnya hilang .
Contoh 1 :
1. Tentukan himpunan penyelesaian 3x – 7 > 2x + 2 jika x merupakan anggota {1,2,3,4,… ,15}
Jawab :
3x – 7 > 2x + 2; x є {1, 2, 3, 4… 15}
3x –2x – 7 > 2x – 2x + 2 ( kedua ruas dikurangi 2x)
x – 7 > 2
x – 7 + 7 > 2 + 7 ( kedua ruas dikurangi7 )
x > 9
jadi himpunan penyelesaiannya adalah {x ¬| x > 9 ; x bilangan asli ≤ 15}
HP = {10, 11, 12, 13, 14, 15}
Contoh 2 :
Tentukan himpunan penyelesaian dari pertidaksamaan 3x – 1 < x + 3 dengan x variable pada himpunan bilangan cacah.
Jawab :
3x – 1 < x + 3
3x – 1+ 1 < x + 3 + 1 (kedua ruas ditambah 1 )
3x < x + 4
3x + (-x) < x + (-x) +4 (kedua ruas ditambah – x)
2x < 4
X < 2
Karena x anggota bilangan cacah maka yang memenuhi x < 2 adalah x = 0 atau x = 1
Jadi himpunan pnyelesaiannya adalah { 0,1 } .
Dalam garis bilangan, grafik himpunan penyelesaiannya adalah sebagai berikut
-1 0 1 2 3 4 5
Contoh :
Sebuah perahu angkut dapat menampung dengan berat tidak lebih dari 1 ton . jika sebuah kotak beratnya 15 kg, maka berapa paling banyak kotak yang dapat diangkut oleh perahu ?
Jawab :
Kalimat matematika : 15 kg x ≤ 1 ton
Penyelesaian : 15 kg x ≤ 1 .500 kg
x ≤ 1 .500 kg
15 kg
x ≤ 100
jadi perahu paling banyak mengangkut 100 kotak .
Soal
1. Penyelesaian dari 5x – 1 = 2x + 11
Jawab
Penyelesaian 5x – 1 = 2x + 11
5x – 1 = 2x + 11
5x – 1 + 1 = 2x + 11 + 1
5x = 2x + 12
5x – 2x = 12
3x = 12
x = 12 : 3
• x = 4

2. Penyelesaian dari 3(x + 1) – 5 = 13,
Penyelesaian 3(x + 1) – 5 = 13
3(x + 1) – 5 = 13
3x + 3 – 5 = 13
3x – 2 = 13
3x – 2 + 2 = 13 + 2
3x = 15
x = 15 : 3
x = 5
3. Penyelesaian persamaan
1/5 (2m + 1 ) = 1/4 ( m + 5 ), adalah ….
Penyelesaian 1/5 ( 2m + 1 ) = 1/4 ( m + 5 )
1/5 ( 2m + 1 ) = 1/4 ( m + 5 ) à dikali dgn 20
4 ( 2m + 1 ) = 5 ( m + 5 )
8m + 4 = 5m + 25 à pakai cara cepat
8m – 5m = 25 – 4
3m = 21
m = 21 : 3
m = 7
4. Umur Pak Agus 3 kali umur Iwan. Jika umur Pak Agus 22 tahun lebih tua dari umur Iwan, maka umur Iwan sekarang adalah….
Misal : umur Iwan = y tahun, maka umur Pak Agus = 3y tahun. Karena umur Pak Agus lebih tua 22 tahun, maka :
umur Pak Agus = umur Iwan + 22
3y = y + 22 à pakai cara cepat
3y – y = 22
2y = 22
y = 11
jadi, umur Iwan adalah 11 tahun.
Persamaan dan Pertidaksamaan Kuadrat
Persamaan kuadrat adalah suatu persamaan kuadrat yang pangkat tertinggi adalah dua (2).
Bentuk umum persamaan kuadrat adalah ax2 + bx + c = 0, dengan a, b, c himpunan bilangan real dan a ≠ 0
Persamaan kuadrat dapat diselesaikan dengan cara :
a. Memfaktorkan
b. Melengkapkan bentuk kuadrat
c. Menggunakan rumus x1,2 =
Untuk nilai b2 – 4ac disebut diskriminan dan dinotasikan dengan D.
Pertidaksamaan kuadrat adalah pertidaksamaan kuadrat yang pangkat tertingginya adalah dua (2)
Bentuk umum pertidaksamaan kuadrat
- ax2 + bx + c 0 , ax2 + bx + c ≥ 0
Suatu pertidaksamaan kuadrat dapat diselesaikan dengan menggunakan garis bilangan.
Adapun langkah-langkah penyelesaian pertidaksamaan kuadrat dengan garis bilangan yaitu :
• Mengubah bentuk pertidaksamaan kuadrat kebentuk umum yaitu bentuk kuadrat di ruas kiri sedangkan ruas kanan nol
• Menentukan pembuat nol atau harga nol dari bentuk kuadrat di ruas kiri yaitu dengan menyelesaikan persamaan ax2 + bx + c = 0
• Membuat garis bilangan dan menempatkan pembuat nol pada garis bilangan itu.
• Menentukan tanda positif atau negatif pada garis bilangan dengan menyelidiki salah satu harga X
• Menentukan penyelesaian pertidaksamaan yang dimaksud sesuai dengan soal
Contoh Soal
1. Tentukan himpunan penyelesaian dari 2×2 – 5x – 3 = 0
Jawab : menggunakan pemfaktoran
2×2 – 5x -3 = 0
(2x + 1) (x – 3) = 0
2x +1 = 0 atau x – 3 = 0
x = -1/2 atau x = 3

0 komentar:

Posting Komentar

luvne.com resepkuekeringku.com desainrumahnya.com yayasanbabysitterku.com